On local smoothing problems and Stein’s maximal spherical means
نویسندگان
چکیده
منابع مشابه
Spherical codes, maximal local packing density, and the golden ratio
golden ratio Adam B. Hopkins, Frank H. Stillinger, and Salvatore Torquato Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA Department of Physics, Princeton University, Princeton, New Jersey 08544, USA Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA School of Natural Sciences, Institute for Advanced Study, Princeton,...
متن کاملLocal Smoothing Estimates Related to the Circular Maximal Theorem
is bounded on Lp(Rn) if p > n/(n − 1). He also showed that no such result can hold for p ≤ n/(n − 1) if n ≥ 2. Thus, the 2-dimensional case is more complicated since the circular maximal operator corresponding to n = 2 is not bounded on L2. Some 10 years passed before Bourgain [2] finally showed that the circular maximal function is bounded on Lp(R2) for every 2 < p ≤ ∞. Somewhat later this res...
متن کاملOn Maximal Spherical Codes I
We investigate the possibilities for attaining two Levenshtein upper bounds for spherical codes. We find the distance distributions of all codes meeting these bounds. Then we show that the fourth Levenshtein bound can be attained in some very special cases only. We prove that no codes with an irrational maximal scalar product meet the third Levenshtein bound. So in dimensions 3 ≤ n ≤ 100 exactl...
متن کاملin translation: translators on their work and what it means
کتاب در باب ترجمه، اثر استر آلن و سوزان برنوفسکی منتشر شده در ماه می 2013 توسط نشریه کلمبیا است. نویسندگان در این کتاب به بررسی 18 مترجم با در نظر گرفتن نقش آثاری که این مترجمان ترجمه کرده اند میپردازند. کتاب به دو بخش تقسیم میشود: " مترجم در جهان" و " کار مترجم" این دو بخش مقالات همیشگی ترجمه و موقعیت خاص ادبیات بیگانه در جهان وسیع امروزی را مورد خطاب قرار میدهد. در این کتاب مقالات متعددی از ن...
Spherical Maximal Operators on Radial Functions
where dσ is the rotationally invariant measure on Sd−1, normalized such that σ(Sd−1) = 1. Stein [5] showed that limt→0Atf(x) = f(x) almost everywhere, provided f ∈ L(R), p > d/(d − 1) and d ≥ 3. Later Bourgain [1] extended this result to the case d = 2. If p ≤ d/(d − 1) then pointwise convergence fails. However if {tj}j=1 is a fixed sequence converging to 0 then pointwise convergence may hold f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2017
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/13313